Abstract:
This study aimed to assess the environmental risk and human health risks associated with PM2.5-bound metals in Paradip city between January 2019 and December 2021. The seasonal average concentrations of PM2.5 were measured 91.43���70.18�?g�m?3, 103.40���60.80�?g�m?3, 124.74���62.37�?g�m?3, and 159.37���77.88�?g�m?3 in pre-monsoon, monsoon, post-monsoon, and winter season respectively. The highest and lowest concentrations are estimated in the winter and pre-monsoon season. Paradip city experienced tropical weather conditions with a hot and humid climate. The wind pattern shows that the predominant wind direction was observed from the south-south-west (SSW) direction. The metals in PM2.5 were analysed using an atomic absorption spectrophotometer (AAS) by air-acetylene flame using a hollow cathode lamp. The average metal concentration decreased in the order of Fe�>�Al�>�Zn�>�Pb�>�Cr�>�Mn�>�Ni�>�Cu�>�Co�>�Cd�>�As. The value of the geo-accumulation index (Igeo) was evaluated >1 for Cd, Fe, and Zn elements. The health risk assessment (HRA) results showed that non-carcinogenic risk (NCR) was higher through the inhalation route followed by ingestion and dermal contact. The cumulative NCR, which is expressed in terms of the hazard index (HI), is greater than 1 for infant (2.78E+00), child (2.53E+00), and adult (1.04E+00) via inhalation pathway. The total carcinogenic risk (TCR) for infants, children, and adults was estimated at 1.45E-04, 7.24E-05 and 1.25E-05, respectively, which exceeded the acceptable limit of 1.00E-06. Our comprehensive research plays an important role in both policymakers and relevant stakeholders for the preparation of city action plans concerning ambient air pollution, which can improve the air quality in and around Paradip city, India.