Abstract:
In the present study, stable sodium plating/stripping has been achieved on a bare aluminum current collector, without any surface modifications or artificial SEI deposition. The crucial role of predeposited sodium using cyclic voltammetry on bare aluminum as a matrix for plating/stripping has been highlighted using different protocols for cycling. The predeposition strategy ensures stable and efficient cycling of sodium in anode -free sodium batteries without dendritic formations. The study highlights the difference of sodium plating/stripping in carbonate and glyme solvent electrolytes on the bare aluminum current collector. Contrary to the carbonate solvent electrolyte, the cell with the tetraglyme solvent electrolyte and sodium loading of 1 mA h/cm2 has an overpotential under 20 mV during the sodium plating/stripping cycles at 0.5 mA/cm2 for a testing period of 650 h. Overpotentials under 40 and 100 mV have been achieved at current densities up to 1 and 2 mA/cm2 for loadings up to 5 and 10 mA h/cm2, respectively, for a testing time up to 1500 h. Density functional theory simulations have been performed to obtain the solvation energies, and the highest occupied molecular orbital lowest unoccupied molecular orbital band gap of the solvent sodium ion complexes for the glyme solvent electrolytes and their trends have been correlated with the experimental observations.