Abstract:
The present work deals with a density functional theory (DFT) study of porous organic framework materials containing - groups for CO2 capture. In this study, first principle calculations were performed for CO2 adsorption using N-containing covalent organic framework (COFs) models. Ab initio and DFT-based methods were used to characterize the N-containing porous model system based on their interaction energies upon complexing with CO2 and nitrogen gas. Binding energies (BEs) of CO2 and N-2 molecules with the polymer framework were calculated with DFT methods. Hybrid B3LYP and second order MP2 methods combined with of Pople 6-31G(d,p) and correlation consistent basis sets cc-pVDZ, cc-pVTZ and aug-ccVDZ were used to calculate BEs. The effect of linker groups in the designed covalent organic framework model system on the CO2 and N-2 interactions was studied using quantum calculations.