Abstract:
Crystalline, ultra long silver nanowires (Ag NWs), few-layered rGO (reduced graphene oxide) and their rGO-Ag NW nanocomposite have been synthesized using a polyol reflux technique under optimized experimental conditions. The field emission performance of the rGO-Ag NW nanocomposite, rGO and Ag NW emitters was investigated. The turn on field required to draw an emission current density of similar to 1 mA cm(-2) was found to be similar to 5.00, 3.92 and 2.40 V mu m(-1) for the Ag NW, rGO and rGO-Ag NW nanocomposite emitters, respectively. The combined contribution of the sharp edges of the thin graphene sheets and high aspect ratio of the Ag nanowires, and their synergetic effect in the rGO-Ag NW nanocomposite, are responsible for the enhanced field emission behavior. First-principles density functional calculations show that the enhanced field emission may also be due to the overlapping of the electronic structures of the Ag NWs and rGO nanosheets.