Abstract:
Nano-columnar arrays of Cu2O were grown by the oblique angle sputter deposition technique based on the self-shadowing principle. The as-grown nano-columnar samples are oriented along {111} direction, and they are highly transmitting in the visible range with a low reflectance. In this work, we show the photo-electrochemical activity of nano-columnar array of Cu2O, which shows a higher (similar to 25%) photocurrent density and a two-fold enhancement in the incident-to-photon conversion efficiency as compared to continuous thin film of Cu2O in photo-assisted proton reduction type reaction. The improvement in electrochemical activity of nano-columnar Cu2O photocathode can be attributed to the change in morphology, crystal structure, as well as electrical property, which shows a higher degree of band bending, increased donor carrier (e-) density and lower width of space charge region as revealed by capacitance measurements and Mott-Schottky analysis. (C) 2015 AIP Publishing LLC.