Samarium doped barium zirconate titanate ceramics with general formula [Ba1-x Sm-2x/3](Zr0.05Ti0.95)O-3 [x = 0, 0.01, 0.02, and 0.03] were prepared by high energy ball milling method. X-ray diffraction patterns and micro-Raman spectroscopy confirmed that these ceramics have a single phase with a tetragonal structure. Rietveld refinement data were employed to model [BaO12], [SmO12], [ZrO6], and [TiO6] clusters in the lattice. Scanning electron microscopy shows a reduction in average grain size with the increase of Sm3+ ions into lattice. Temperature-dependent dielectric studies indicate a ferroelectric phase transition and the transition temperature decreases with an increase in Sm3+ ion content. The nature of the transition was investigated by the Curie-Weiss law and it is observed that the diffusivity increases with Sm3+ ion content. The ferroelectric hysteresis loop illustrates that the remnant polarization and coercive field increase with an increase in Sm3+ ions content. Optical properties of the ceramics were studied using ultraviolet-visible diffuse reflectance spectroscopy.
Copyright:Copyright [2014]. All efforts have been made to respect the copyright to the best of our knowledge. Inadvertent omissions, if brought to our notice, stand for correction and withdrawal of document from this repository.