Abstract:
Concave nanostructures are rare because of their thermodynamically unfavorable shapes. We prepared bimetallic FeNi concave nanocubes with high Miller index planes through controlled triggering of the different growth kinetics of Fe and Ni. Taking advantage of the higher activity of the high-index planes, we then fabricated monodispersed concave nanocages via a material-independent electroleaching process. With the high-index facets exposed, these concave nanocubes and nanocages are 10- and 100-fold more active, respectively, toward electrodetection of 4-aminophenol than cuboctahedrons, providing a label-free sensing approach for monitoring toxins in water and pharmaceutical wastes.