Online Repository of E-contents (ORE)

Nucleobase Regulated Facet Engineering Enables Zinc(100) Oriented Growth for Long-Life Zinc Anode under Combined Elevated Areal Capacity and Current Density

Show simple item record

dc.contributor.author Sarkar, S. K. en
dc.contributor.author Maharana, A. K. en
dc.contributor.author Sarkar, R. en
dc.contributor.author Rambabu, G. en
dc.contributor.author Dash, B. en
dc.contributor.author Pradhan, M. en
dc.contributor.author Pradhan, G. K. en
dc.contributor.author Jhaa, G. en
dc.contributor.author Thakuria, S. en
dc.contributor.author Paul, S. en
dc.contributor.author Das, S. en
dc.date.accessioned 2025-12-10T05:46:30Z
dc.date.available 2025-12-10T05:46:30Z
dc.date.issued 2025
dc.identifier.citation Small, 21(48), 2025 en
dc.identifier.issn 1613-6810, 1613-6829 en
dc.identifier.uri http://ore.immt.res.in/handle/2018/3848
dc.description.abstract The extremely short cycling life of Zn-anode under combined high areal capacity and current density remains a key barrier to the large-scale AZIB deployment. Herein, it is experimentally and theoretically demonstrated that adenine, a multirole zincophilic biomolecular electrolyte additive, outperforms other nucleobases, promoting Zn deposition toward (100) plane, notably enhancing cycling stability under simultaneous ultrahigh areal capacity and current density. Owing to its multiple nitrogen atoms with varying basicity, adenine engages in multifaceted interactions, including coordination with solvated Zn2+ ions, adsorption on the Zn(002) plane, and H-bonding with both solvated and bulk water molecules. These synergistic interactions passivate the thermodynamically stable Zn(002) plane, suppress interfacial water-induced HER and byproduct formation, and promote dendrite-free Zn deposition along the high-energy (100) plane. The resulting crystallographic regulation results in long-cycle-life Zn stripping/plating even under practically demanding harsh conditions of ultrahigh areal capacity and current density. In an adenine-boosted Zn||Zn symmetric cell achieves a cycle-life of 1060 h under combined conditions of 40 mA cm-2 and 40 mAh cm-2 and a record cumulative capacity of 42400 mAh cm-2. Current findings highlight the potential of zincophilic biomolecular additive design principles in overcoming key interfacial challenges, enabling a distinctive, environmentally benign pathway toward realizing large-scale AZIB development. en
dc.language.iso en en
dc.publisher Wiley-V C H Verlag en
dc.relation.isreferencedby SCI en
dc.subject Chemical Sciences en
dc.subject Materials Sciences en
dc.subject.other Aqueous zinc-ion battery en
dc.subject.other crystal facet engineering en
dc.title Nucleobase Regulated Facet Engineering Enables Zinc(100) Oriented Growth for Long-Life Zinc Anode under Combined Elevated Areal Capacity and Current Density en
dc.type Journal Article en
dc.affiliation.author CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository

Browse

My Account