Online Repository of E-contents (ORE)

Thermally tuned oxygenated covalent triazine framework via self-templating for a durable 3.8 V aqueous supercapacitor with record energy and power density

Show simple item record

dc.contributor.author Maharana, A. K. en
dc.contributor.author Sarkar, S. K. en
dc.contributor.author Sarkar, R. en
dc.contributor.author Addicoat, M. A. en
dc.contributor.author Rambabu, G. en
dc.contributor.author Majhi, M. en
dc.contributor.author Das, S. en
dc.date.accessioned 2025-12-10T05:30:55Z
dc.date.available 2025-12-10T05:30:55Z
dc.date.issued 2025
dc.identifier.citation Journal of Materials Chemistry A, vol.13(47), 2025: 41030-41044 en
dc.identifier.issn 2050-7488 en
dc.identifier.uri http://ore.immt.res.in/handle/2018/3847
dc.description.abstract High-voltage (>2 V) aqueous supercapacitors (SCs) showing high energy and power density offer a sustainable, safe, eco-friendly, and cost-effective alternative to organic electrolyte-based SCs, bridging the gap between batteries and capacitors. Herein, we report the modular synthesis of oxygen-rich covalent triazine frameworks (Oxy-CTFs) showing a large surface area (2543 m(2) g(-1)) and pore volume (2.95 cm(3) g(-1)) via ZnCl2-mediated ionothermal polymerization using a cost-effective 2,5-dimethoxy terephthalonitrile monomer (LOMe). The strategically embedded methoxy groups serve as both a monomer and soft self-template. Apart from its catalytic role, ZnCl2 as an activating agent/porogen simultaneously induces partial in situ O-demethylation, carbonization, and structural rearrangement, enriching the electroactive carbonyl/quinone species and graphitic domains embedded with pyrrolic and pyridinic nitrogen functionalities in the resulting Oxy-CTFs. Combined, these features enhance the charge-storage capability, ion-transport kinetics, and faradaic activities. In a symmetric SC, Oxy-CTFs delivered a record voltage of 3.1 V, capacitance of 239.4 +/- 6.5 F g(-1), and energy and power densities of 79.5 +/- 1.98 Wh kg(-1)/387.3 +/- 10.5 W kg(-1), respectively. In a hybrid SC (Na0.44MnO2 as the battery-type cathode), the voltage extended to 3.8 V, achieving the highest energy and power densities of 93.1 +/- 2.1 Wh kg(-1)/942.2 +/- 21.2 W kg(-1), respectively. Furthermore, it demonstrated remarkable cycling stability, with 93.2% capacity retention after 20 000 cycles (20 A g(-1)) and maintained 95.5% after 60 000 repeated cycles with a cell shelf-stored for 714 days. This rational soft self-templating approach sets a new performance benchmark in aqueous SC research. en
dc.language.iso en en
dc.publisher The Royal Society of Chemistry en
dc.relation.isreferencedby SCI en
dc.subject Chemical Sciences en
dc.subject Physical Sciences en
dc.subject Materials Sciences en
dc.subject.other Carbonaceous Electrode Materials en
dc.title Thermally tuned oxygenated covalent triazine framework via self-templating for a durable 3.8 V aqueous supercapacitor with record energy and power density en
dc.type Journal Article en
dc.affiliation.author CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository

Browse

My Account