| dc.contributor.author | Nayak, B. | en |
| dc.contributor.author | Mohanty, R.I. | en |
| dc.contributor.author | Mukherjee, A. | en |
| dc.contributor.author | Jena, B.K. | en |
| dc.contributor.author | Bhanja, P. | en |
| dc.date.accessioned | 2025-09-18T03:55:24Z | |
| dc.date.available | 2025-09-18T03:55:24Z | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | Chemcatchem, vol.17(16), 2025 | en |
| dc.identifier.issn | 1867-3880, 1867-3899 | en |
| dc.identifier.uri | http://ore.immt.res.in/handle/2018/3788 | |
| dc.description.abstract | The development of alternative, clean, and environment-friendly energy resources is a crucial matter due to the lack of fossil fuel sources. Thus, the design and synthesis of a cost-effective, multifunctional electrocatalyst for energy conversion systems would be a superior substitute to the less abandoned, costly noble metal catalyst. Transition metal phosphonate anchored graphene oxide has been potentially proven as an effective heterogeneous electrocatalyst for energy conversion reactions. The lower catalytic performance during oxygen reduction reaction (ORR) is the main challenging factor due to the high binding energy between adsorbed species and active sites of the catalyst. Herein, the synthesis of microporous nickel phosphonate anchored graphene oxide nanosheets (NiGLy@GO) was reported under static, two-step hydrothermal reaction conditions. The as-obtained material, which has a good specific surface area, displays superior electrocatalytic performance toward ORR with a high positive onset potential of 0.81 V versus RHE. Also, the catalyst exhibits remarkable stability during the chronoamperometry test, with no significant change in the initial current, and shows excellent tolerance toward the methanol crossover effect. | en |
| dc.language.iso | en | en |
| dc.publisher | Wiley-V C H Verlag Gmbh | en |
| dc.relation.isreferencedby | SCI | en |
| dc.subject | Chemical Sciences | en |
| dc.subject.other | Electrocatalysis | en |
| dc.subject.other | Graphene oxide | en |
| dc.subject.other | Microporous | en |
| dc.subject.other | Nanosheets | en |
| dc.subject.other | Nickel phosphonate | en |
| dc.subject.other | ORR | en |
| dc.title | Graphene Oxide Reinforced Microporous Nickel Phosphonate Nanocomposite for Electrocatalytic Oxygen Reduction Reaction - Nayak - 2025 - ChemCatChem - Wiley Online Library | en |
| dc.type | Journal Article | en |
| dc.affiliation.author | CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India | en |