Online Repository of E-contents (ORE)

Harnessing phytoremediation capabilities of nonedible energy plants for Cr6+ remediation and green energy perspectives: a review

Show simple item record

dc.contributor.author Das, A
dc.contributor.author Patra, SR
dc.contributor.author Dhal, NK
dc.date.accessioned 2025-07-22T08:55:25Z
dc.date.available 2025-07-22T08:55:25Z
dc.date.issued 2025
dc.identifier.citation Environmental Monitoring and Assessment, 197, 2025; 656
dc.identifier.issn 0167-6369
dc.identifier.uri http://ore.immt.res.in/handle/2018/3694
dc.description University Grants Commission; UGC (University Grants Commission); New Delhi, India
dc.description.abstract Hexavalent chromium (Cr6+) pollution is a significant environmental and health risk. Phytoremediation, using green plants as solar-powered bioreactors, offers a sustainable reclamation method. However, managing the biomass generated post-remediation remains a challenge. To address this, bioenergy crops, known for their high biomass and biofuel potential, are increasingly used in phytoremediation. This research evaluates 13 non-edible bioenergy crops for their Cr6+ remediation efficacy, mechanisms, and post-remediation biomass management. These crops, including Jatropha curcas, Pongamia pinnata, and Ricinus communis, produce biodiesel from seeds, while others like Salix viminalis and Arundo donax yield bioethanol from biomass. Biodiesel yields from J. curcas, P. pinnata, M. ferrea, R. communis, E. camaldulensis, C. flexuosus, and J. gossypiifolia range from 23.9% to 75%. Bioethanol yields from S. viminalis, A. donax, T. domingensis, T. angustifolia, and T. latifolia vary from 3.19 to 51 g/L. These plants demonstrate significant Cr6+ uptake and detoxification through phytoremediation mechanisms such as phytoextraction, rhizofiltration, and phytostabilization, offering an eco-friendly alternative to conventional methods. Simultaneously, their biomass serves as feedstock for biodiesel, bioethanol, and bio-oil production, contributing to renewable energy systems. This synergy reduces risks of secondary pollution and aligns with global sustainability goals. The study emphasizes optimizing biomass conversion techniques, managing post-remediation residues, and leveraging genetic engineering to enhance plant efficacy. Future directions include scaling integrated phytoremediation-bioenergy systems and evaluating environmental, economic, and social impacts through life cycle assessments.
dc.language en
dc.publisher Springer
dc.relation.isreferencedby SCI
dc.rights Copyright [2025]. All efforts have been made to respect the copyright to the best of our knowledge. Inadvertent omissions, if brought to our notice, stand for correction and withdrawal of document from this repository.
dc.subject Environmental Sciences
dc.title Harnessing phytoremediation capabilities of nonedible energy plants for Cr6+ remediation and green energy perspectives: a review
dc.type Journal Article
dc.affiliation.author AcSIR-IMMT, Bhubaneswar 751013, Odisha, India


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository

Browse

My Account