Online Repository of E-contents (ORE)

Effect of Y3+ and Co2+ co-doping on the structural, optical, magnetic and dielectric properties of LaFeO3 nanoparticles

Show simple item record

dc.contributor.author Mishra, D
dc.contributor.author Nanda, J
dc.contributor.author Parida, S
dc.contributor.author Sankaran, KJ
dc.contributor.author Ghadei, S
dc.date.accessioned 2025-07-22T08:55:14Z
dc.date.available 2025-07-22T08:55:14Z
dc.date.issued 2024
dc.identifier.citation Journal Of Sol-Gel Science and Technology, 111, 2024; 381-394
dc.identifier.issn 0928-0707
dc.identifier.uri http://ore.immt.res.in/handle/2018/3577
dc.description BBSR
dc.description.abstract This study explores the comprehensive characterization of Y3+ and Co2+ co-substituted LaFeO3 nanoparticles synthesized via the sol-gel auto-combustion method. The synthesized samples, La1-xYxFe1-y CoyO3 (x = 0,0.10 and y = 0,0.03,0.05,0.07) were characterized by employing various techniques such as x-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with EDX, Raman spectroscopy, UV-visible spectroscopy, and Vibrating Sample Magnetometry (VSM). The Raman and XRD analysis, supported by Rietveld refinement, provided conclusive evidence of a pure orthorhombic LaFeO3 phase. Microstructural studies unveiled an agglomerate-type, irregular particle distribution, while EDX analysis confirmed the elemental composition. The XPS study gives evidence about the presence of both Fe2+ and Fe3+ oxidation states, and Co has a Co3+ oxidation state. UV-vis spectroscopy demonstrated enhanced visible light absorption, revealing a reduced bandgap with increasing doping percentages. VSM measurements exhibited M-H loops, substantiating the weak ferromagnetic nature of the materials. Moreover, these nanoparticles exhibit dielectric constants and low dielectric losses, making them suitable for use in devices for communication. Overall, these findings may offer valuable contributions to the understanding of nanomaterial characteristics for potential applications in diverse fields. [GRAPHICS] .
dc.language en
dc.publisher Springer
dc.relation.isreferencedby SCI
dc.rights Copyright [2024]. All efforts have been made to respect the copyright to the best of our knowledge. Inadvertent omissions, if brought to our notice, stand for correction and withdrawal of document from this repository.
dc.subject Materials Sciences
dc.title Effect of Y3+ and Co2+ co-doping on the structural, optical, magnetic and dielectric properties of LaFeO3 nanoparticles
dc.type Journal Article
dc.affiliation.author SOA-ITER, Bhubaneswar 751030, Odisha, India


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository

Browse

My Account