dc.contributor.author |
Gope, R |
|
dc.contributor.author |
Mandal, A |
|
dc.contributor.author |
Ganguly, S |
|
dc.date.accessioned |
2024-07-25T04:17:04Z |
|
dc.date.available |
2024-07-25T04:17:04Z |
|
dc.date.issued |
2024 |
|
dc.identifier.citation |
Materials Today Communications, 38, 2024; 108511 |
|
dc.identifier.uri |
http://ore.immt.res.in/handle/2018/3462 |
|
dc.description |
Scheme for Promotion of Academic and Research Collaboration |
|
dc.description.abstract |
The current investigation examines the microstructure and impression creep behavior of both gravity and suction-cast Al-12Ce alloy containing 4Si and 4Si+0.4Mg (all in wt%) additions across stress and temperature ranges of 335-480 MPa and 473-548 K, respectively. The Al11Ce3 phase volume fraction, interlamellar spacing (ILS), and aspect ratio decrease when 4Si and/or 0.4Mg are incorporated into the Al-12Ce alloy. However, the aspect ratio and volume fraction of CeAlSi2 phase increased, which was more pronounced in suction casting. The gravity-cast Al-12Ce-X exhibits superior impression creep resistance contrary to Al-12Ce alloy, which further enhanced after suction casting. Remarkably, the suction-cast Al-12Ce-4Si-0.4Mg alloy displays the maximum hardness (38% higher) and highest creep resistance (63% higher) than Al-12Ce alloy. For all the alloys, the prevailing creep mechanism was pipe diffusion-dominated dislocation creep. High creep resistance of suction cast Al-12Ce-4Si-0.4Mg alloy was due to the smallest grain size, less Al11Ce3 phase content, lowest interlamellar spacing, solid solution strengthening by Mg, maximum CeAlSi2 phase content, and highest dislocation density. |
|
dc.language |
en |
|
dc.publisher |
Elsevier |
|
dc.relation.isreferencedby |
SCI |
|
dc.rights |
Copyright [2024]. All efforts have been made to respect the copyright to the best of our knowledge. Inadvertent omissions, if brought to our notice, stand for correction and withdrawal of document from this repository. |
|
dc.subject |
Materials Sciences |
|
dc.title |
Enhanced impression creep performance of gravity and suction cast Al-12Ce alloy with Si and Mg additions |
|
dc.type |
Journal Article |
|
dc.affiliation.author |
IIT Bhubaneswar, Argul-752050, Odisha, India |
|