Online Repository of E-contents (ORE)

Macrolactin A as a Novel Inhibitory Agent for SARS-CoV-2 M-pro: Bioinformatics Approach

Show simple item record

dc.contributor.author Bharadwaj, K.K.
dc.contributor.author Sarkar, T.
dc.contributor.author Ghosh, A.
dc.contributor.author Baishya, D.
dc.contributor.author Rabha, B.
dc.contributor.author Panda, M.K.
dc.contributor.author Nelson, B.R.
dc.contributor.author John, A.B.
dc.contributor.author Sheikh, H.I.
dc.contributor.author Dash, B.P.
dc.contributor.author Edinur, H.A.
dc.contributor.author Pati, S.
dc.date.accessioned 2023-07-28T05:00:53Z
dc.date.available 2023-07-28T05:00:53Z
dc.date.issued 2021
dc.identifier.citation Applied Biochemistry and Biotechnology, 193(10), 2021: 3371-3394
dc.identifier.issn 0273-2289
dc.identifier.uri http://ore.immt.res.in/handle/2018/2969
dc.description.abstract COVID-19 is a disease that puts most of the world on lockdown and the search for therapeutic drugs is still ongoing. Therefore, this study used in silico screening to identify natural bioactive compounds from fruits, herbaceous plants, and marine invertebrates that are able to inhibit protease activity in SARS-CoV-2 (PDB: 6LU7). We have used extensive screening strategies such as drug likeliness, antiviral activity value prediction, molecular docking, ADME, molecular dynamics (MD) simulation, and MM/GBSA. A total of 17 compounds were shortlisted using Lipinski's rule in which 5 compounds showed significant predicted antiviral activity values. Among these 5, only 2 compounds, Macrolactin A and Stachyflin, showed good binding energy of -9.22 and -8.00 kcal/mol, respectively, within the binding pocket of the M-pro catalytic residues (HIS 41 and CYS 145). These two compounds were further analyzed to determine their ADME properties. The ADME evaluation of these 2 compounds suggested that they could be effective in developing therapeutic drugs to be used in clinical trials. MD simulations showed that protein-ligand complexes of Macrolactin A and Stachyflin with the target receptor (6LU7) were stable for 100 nanoseconds. The MM/GBSA calculations of M-pro-Macrolactin A complex indicated higher binding free energy (-42.58 +/- 6.35 kcal/mol). Dynamic cross-correlation matrix (DCCM) and principal component analysis (PCA) on the residual movement in the MD trajectories further confirmed the stability of Macrolactin A bound state with 6LU7. In conclusion, this study showed that marine natural compound Macrolactin A could be an effective therapeutic inhibitor against SARS-CoV-2 protease (6LU7). Additional in vitro and in vivo validations are strongly needed to determine the efficacy and therapeutic dose of Macrolactin A in biological systems.
dc.language en
dc.publisher Springer
dc.relation.isreferencedby SCI
dc.rights Copyright [2021]. All efforts have been made to respect the copyright to the best of our knowledge. Inadvertent omissions, if brought to our notice, stand for correction and withdrawal of document from this repository.
dc.subject Biological Sciences
dc.title Macrolactin A as a Novel Inhibitory Agent for SARS-CoV-2 M-pro: Bioinformatics Approach
dc.type Journal Article
dc.affiliation.author Gauhati Univ, Gauhati 781014, Assam, India


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository

Browse

My Account