Online Repository of E-contents (ORE)

In Situ Synthesis of Mesoporous TiO2 Nanofibers Surface-Decorated with AuAg Alloy Nanoparticles Anchored by Heterojunction Exhibiting Enhanced Solar Active Photocatalysis

Show simple item record

dc.contributor.author Chattopadhyay, S.
dc.contributor.author Bysakh, S.
dc.contributor.author Mishra, P.M.
dc.contributor.author De, G.
dc.date.accessioned 2023-07-28T05:00:17Z
dc.date.available 2023-07-28T05:00:17Z
dc.date.issued 2019
dc.identifier.citation Langmuir, 35(44), 2019: 14364-14375
dc.identifier.issn 0743-7463
dc.identifier.uri http://ore.immt.res.in/handle/2018/2655
dc.description.abstract We designed an electrospinning synthesis protocol to obtain in situ, the mesoporous TiO2 nanofibers, which are surface-decorated with plasmonic AuAg nanoparticles (AuAg-mTNF-H). Such alloy nanoparticles are found to be partially exposed on the surface of the nanofibers. Characterization by HRTEM and EDS confirmed the formation of 1:1 AuAg alloy nanoparticles on the surface of TiO2 nanofibers with heterojunction at the interfaces. On the basis of electron microscopic characterization, we proposed that, during the formation of the nanofibers, the incorporated metal ions with surface capping of negative charges migrated toward the outer surface of the nascent fibers under the influence of high positive voltage required for electrospinning. As a result, after the subsequent thermal treatment, the crystallization of TiO2 nanofibers and the formation of alloy nanoparticles took place, leading to the formation of a deep heterojunction through partial embedment of the nanoparticles. The formation of AuAg alloy also restricted the oxidation of Ag, thus making the nanoparticles highly stable in ambient condition. Accordingly, such unique AuAg-mTNF-H photocatalyst shows strong light absorption property covering the entire range of visible wavelengths with stability. The solar light harvesting property of AuAg-mTNF-H was verified by monitoring solar light induced H-2 evolution via water splitting and photodecomposition of MB. In both the cases AuAg-mTNF-H showed excellent H-2 evolution and photodecomposition of dye.
dc.language en
dc.publisher American Chemical Society
dc.relation.isreferencedby SCI
dc.rights Copyright [2019]. All efforts have been made to respect the copyright to the best of our knowledge. Inadvertent omissions, if brought to our notice, stand for correction and withdrawal of document from this repository.
dc.subject Chemical Sciences
dc.subject Materials Sciences
dc.title In Situ Synthesis of Mesoporous TiO2 Nanofibers Surface-Decorated with AuAg Alloy Nanoparticles Anchored by Heterojunction Exhibiting Enhanced Solar Active Photocatalysis
dc.type Journal Article
dc.affiliation.author CSIR-CGCRI, Kolkata 700032, India


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository

Browse

My Account